DNV GL Study on Wind Turbine Blades

Shailaja A. Lakshmi
Wednesday, March 6, 2019

The global quality assurance and risk management company DNV GL released an in-depth study, commissioned by the U.S. Department of Energy’s Lawrence Berkeley National Laboratory, which examines the challenges associated with manufacturing and deploying next-generation, increasingly larger land-based wind turbines.

In the past decade, the U.S. wind energy industry has achieved significant improvements in energy production and cost efficiency, driven in part by increased turbine, blade, and tower size.

However, the industry is quickly approaching a logistical cost and capability ceiling as turbine components become too large for existing infrastructure and transportation to accommodate.

Currently the largest blades deployed in the U.S. are 67 m, but blades up to 88.4 m—or almost as long as a football field—have been deployed in Europe; blades up to 115 m are on the horizon.

As turbine component sizes increase, logistical constraints can either reduce the number of developable sites or elevate costs, which can make some potential sites economically uncompetitive.

Finding new solutions to logistical challenges associated with ever-larger components can enable the wind industry to achieve optimal wind levelized cost of energy (LCOE) options for every region of the United States.

“DNV GL identified a number of R&D activities that could make valuable contributions to the viable development of supersized blades. These recommendations are feeding into the U.S. Department of Energy-funded “Big Adaptive Rotor” project to ass ess and prioritize technology needed to develop a cost-competitive land-based 5-MW turbine with 100-meter-long blades,” said Ryan Wiser, senior scientist, Lawrence Berkeley National Laboratory.

The acceleration of R&D to make supersized blades feasible requires collaboration between researchers in the United States, turbine manufacturers, blade manufacturers, and transportation logistics companies.

Blades are the most critical component in determining the technical and economic performance of wind turbines. The logistics associated with supersized blades adds additional levels of complexity into the development process, which the industry and researchers must work collaboratively to address.

Categories: Wind Power Turbines Transportation Research

Related Stories

Keppel Reclaiming Control of 13 Rigs to Cash In on Offshore Drilling Market's Growth

Impending Shortage of Jackups within Ageing Asia Pacific Fleet

ABS Takes Charge of Digital Twin Project for Petrobras’ FPSOs

Petronas to Proceed with South China Sea Oil and Gas Exploration

SBM Offshore’s FPSO for ExxonMobil’s Guyana Oil Project Takes Final Shape (Video)

LNG Carriers Line Up At Malaysia's Bintulu Complex After Maintenance

Indonesia Green Lights Eni Gas Projects

Equinor Pulls Out of Vietnam's Offshore Wind Industry

ADNOC Signs LNG Supply Agreement with Osaka Gas for Ruwais LNG Project

Valeura Set to Restart Wassana Production Offshore Thailand

Current News

Velesto Completes Removal of Wrecked Naga 7 Jack-Up Rig Off Malaysia

BP Greenlights $7B CCUS Scheme Tied to Indonesia LNG Facility

Sapura Scoops Petrobras Contract for Pan-Malaysia Offshore Services

Velesto’s Drilling Rigs Up for Automatization Overhaul Under New Tech Alliance

US Firm Finds Chinese Partner to Deliver Mobile Offshore Drilling Units

TotalEnergies and Oil India to Jointly Tackle Methane Emissions Issues

Keppel Reclaiming Control of 13 Rigs to Cash In on Offshore Drilling Market's Growth

Global Offshore Wind Stumbles to the End of '24

Seatrium Delivers Fifth Jack-Up to Borr Drilling

Malaysia's FPSO Firm Bumi Armada Eyes Merger with MISC’s Offshore Unit

Subscribe for AOG Digital E‑News

AOG Digital E-News is the subsea industry's largest circulation and most authoritative ENews Service, delivered to your Email three times per week

https://accounts.newwavemedia.com